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Some Comments on the Endochronic Theory of Plasticity
by
R.S. Rivlin
Center for the Application of Mathematics

Lehigh University, Bethlehem, Pa.

1. Introduction

In two papers [1,2] published in 1971, Valanis claimed to der-
ive from thermodynamic considerations three-dimensional constitutive
equations on the basis of which the behavior of plastic, or visco-
plastic materials, subjected to small or large deformations could be
modeled. His theory was most fully developed in the case when the
material is rate-independent and the deformations are sufficiently
small so that the classical infinitesimal stfain tensor can be used.
Accordingly, in the present paper the theory will be discussed in
this context.

In [1] and [2], Valanis claimed for this theory the merit, over
most other phenomenological theories which purport to describe the
elastic-plastic behavior of metals, that it avoids the introduction
of a yield surface. The stress is expressed as a functional, of
specific form,of the history of the strain - a single such expression
being valid both under conditions of loading and unloading. It also
expresses the stress explicitly as a functional of the total strain
and avoids the separation of strain into elastic and plastic parts.

Since the thermodynamic content of Valanis's argument is ques-
tionable, and is, in any case, replete with ad hoc assumptions, dis-
cussion of it is relegated to Appendix A. There the argument is
presented in a manner which retains its essential features, but is

stripped of irrelevancies. However, even when presented in this

manner, it is evident that certain assumptions are unacceptable




and others are of a quite arbitrary character unsupported by physi-
cal justification. Accordingly, in the main body of the paper

we discuss the constitutive equation without relation to this back-
ground, purely from the point of view of its suitability as a model
for such materials as metals.

The essential feature of the constitutive equation of Valanis
is that it assumes the stress following some deformation history to
be a linear isotropic functional of the strain increment history,
the kernel in this functional being a scalar function of an

intrinsic time defined by an isotropic scalar functional of the

strain increment history. Valanis uses the term endochronic theory

to describe a theory of this type. Valanis assumes a quite ex-
plicit form for the functional defining the intrinsic time. He
justifies it by an alleged reasonableness, which is subjective, and
by alleged agreement between the predictions of the theory and
experiment. It is seen in §32 and 6 that even if we take this
agreement at its face value, it could not establish the validity of
his assumed expression for the intrinsic time, since a wide variety
of other expressions would provide equally good agreement.

In this paper we discuss the theory in a slightly broader
context, in which the particular form for the intrinsic time used
by Valanis is replaced by a somewhat more general one (see equation
5.4) below). It will be seen that most of the criticisms which
can be levelled against the theory of Valanis also apply to theories
based on this more general definition of intrinsic time.

For rate-independent materials, the strain-history can
necessarily be parametrized in terms of the path-length covered by
the strain history in 9-dimensional strain space. The intrinsic

time, whether defined in the manner adopted by Valanis, or in the

At




more general manner of the present paper, can then be parametrized
in terms of this strain path length. As a matter of convenience we
adopt this course in the present paper, although this is not
essential to the arguments presented.

In the case of one-dimensional deformations, discussed in
§§2-4, this strain path length is taken as the intrinsic time. For
simple shearing deformations this involves no loss of generality
since the intrinsic time is necessarily some constant multiple of
the strain path length. This is also the case for simple extension,
provided that we make the assumption, which is made by Valanis,
that Poisson's ratio* (defined as the ratio decremental transverse
strain/incremental longitudinal strain) is constant.

In §2 we establish certain relations which could, at any rate
in principle, be used to test the applicability of the class of
constitutive equations considered to a particular material for one-
dimensional deformations.

In §3 we discuss the relation between the incrementﬁl moduli
for loading and unloading from a state in the plastic regime. It
has been pointed out that the constitutive equation adopted
by Valanis yields, in disagreement with experimental results for
metals, a value for the unloading modulus which is very different
from the initial modulus for infinitesimal strains from the un-
deformed state. We find that this is not necessarily the case in
the context of the more general theory discussed in the present

paper. In §4, we discuss the dissipation in infinitesimal

* This assumption, which was criticized by Lee [3] is discussed
in §7.




unloading-loading and loading-unloading strain cycles starting at
an arbitrary strain which has been reached by a monotonic loading.
We find, as did Sandler [4] in a more restricted context, that the
dissipation must necessarily be negative in either one or the
other of these cycles and accordingly, the material will be unstable.
The three-dimensional theory is introduced in §5. It is
shown in §6 that for deformations consisting of successive simple
extension and simple shears, carried out in discrete time inter-
vals, any definition of intrinsic time in the broader class envisaged
in the present paper can lead to the same prediction for the stress
as that used by Valanis, if appropriate values are given to the
adjustable constants. Accordingly, agreement between theory and
experiment for deformations of this type cannot be used to estab-
lish the predictive value of Valanis's constitutive equation for
more general deformations. Attention is drawn in §8 to a further
general criticism of constitutive equations based on the endo-
chronic concept. It is shown that if a strain is reached by two
paths which differ only very slightly, the associated stresses may
be very different, i.e. the relation between stress and strain
history is not continuous in the sense of the supremum norm.
In [S] Valanis presented a revised theory in order to meet
the criticisms which had been levelled at the earlier theory.
This is discussed briefly in §9., He aguin motivates the theory
by thermodynamic arguments which are analogous to, and open to the
same criticisms as, those used to motivate the earlier theory.
Accordingly, we do not discuss them explicitly in the present
paper. While this second theory is, in fact, not open to most of

the criticisms to which the earlier theory is subject, it does not
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possess the two major and somewhat revolutionary advantages which
were claimed for the latter - that it describes the elastic-plastic

behavior of metals without the introduction of a yield surface and

without the separation of the strain into elastic and plastic
i parts. It differs from previous theories of plasticity only in the
manner in which strain-hardening affects the yield surface and the
relation between stress and incremental plastic strain. No evidence
is adduced to demonstrate that it provides a more accurate des-
cription of the actual behavior of metals than do other constitu-

tive equations that have been suggested.




2. One-dimensional theory

We consider small uniaxial deformations of a rate-independent
material. Let e denote the strain. Let £ be the length of the

strain-path, thus:

de = |de| , (2.1)
with ¢ = 0 in the undeformed state.
We now consider a deformation in which € = 0 initially and in-

Creases monotonically to € » then decreases monotonically to

5 increases monotonically to €5 and so on, the final rever-

sal taking place at e=€ . We denote the final value of ¢ at

which the stress is measured by E . We note that if u 1is odd (even)

€

the last reversal will be followed by a decrease (increase) in €.

Let ,ld be the value of £ corresponding to the oth rever-

sal of the strain, and let L be the value of £ corresponding to

the final value E . It is easily seen from (2.1) that
=1
- _148-1 _140=1
2, =2 si (-1) eg +(-1) €y (2.2)
=1
and
L= 2 f -8 e, +(-D*E . (2.3)
B=1 :

We now regard e as a function of £ and make the assump-

tion that the stress o 1is given by

L
g = f £(L,2)de (L) , (2.4)
0

where f 1is a positive function of the indicated arguments,

[ ——
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Noting that for ¢, _,< £ < £ ,

de(£) = d2 (a odd) and de(&) = -d¢ (a even) , (2.5)

we obtain from (2.4)

G0 gr,e) ¢ (DY gL, , (2.6)
1

Q
]
(3]
01

o

where

4
g(L,2) = I f(L,2)de . (2.7)
0

We can rewrite (2.6) as

u
I (1% o(L,e) + o(L,L) (u even)
a=1
o = (2.8)
8 a=-1
I D% o,e) (u 0dd) ,
a=1
where
G(L’KC!) = Zg(L,I-a) 'g(L’L) ’
(2.9)
o(L,L) = g(L,L)
We note that o(L,Za) is the stress, when the length of the strain E
path is L , in a deformation in which the strain increases mono-

tonically from zero to La and then decreases monotonically until
the total length of the strain path is L . Also, o(L,L) is the

stress, at strain path length L , in a deformation in which the

. strain increases monotonically from 0 to L .

From (2.8) it is easily seen that




O(L,Zl,...,l ) -G(L,Zl,...,£

" = (-DMle,L) -oL,g)],  (2.10)

U-l)

where c(L,Zl,...,zu) denotes the stress, at strain path length
L , resulting from a deformation with u reversals of strain at
path lengths 21,22,...,£u .
From (2.10) or (2.8), we easily obtain the relations

O(LyLysennsly) ~0(L L ,eesly 5) = (-1 [o(L,e, 1)-0(L,2)]. (2.11)

Conversely, by giving « the values 3,5,...,u (odd) in (2.11)
and adding the resulting equations, we can recover (2.8)2 and, by
giving o the values 2,4,...,u (even) and adding the resulting
equations, we can recover (2.8)1 . In deriving the second of these
results, we note that when o = 0 , c(L,Za)=c(L,L)

As an example of the implications of equations (2.10) and (2.11),
we consider a deformation in which the strain increases from zero
to e and then undergoes n cycles of deformation between strains

1

€ and €, (€2<€1) . In this case

2 = e + (a-l)(sl-eZ) , L= ¢+ Zn(el-e (2.12)

o 1 1 2)

Taking a = 2n + 1 in (2.11), we obtain

a(L,2 -;£2n+1)'G(L1£l"'-,zzn_l) = G(L’£2n+1)'G[L’£2n) . (2.13)

l,o.

We note that the o's in (2.13) have the following interpretations:
o(L,Zl,...,£2n+1) is the stress at strain g, resulting from an
initial deformation to strain ¢, followed by n cycles between

strains e, and €5 (€2<€1) ;o oL, 8,008yl 1) s the stress at




. . ;
strain € Z(sl £

2) resulting from an initial deformation to

1 followed by n-1 <cycles between strains € and €,

and then a further increase in strain to e+ Z(el-ee) ;

strain ¢

c(L,£2n+1) = g(L,L) 1is the stress at strain e_+ Zn(el-e resul -

1 2)
ting from a monotonic deformation to this strain;

O(L,Ezn) is the stress at strain €q% 2(n-1)(el-eg)

a monotonic deformation to strain g+ (Zn-l)(el-ee) followed by a

resulting from

decrease in the strain to e+ 2(n-1)(el—32)

Suppose now that we do not assume that the stress is given by
an expression of the form (2.4). As before, we consider that ini-
tially the strain increases and this increase is followed by u rever-
sals of the strain at strains e¢_,¢ ,...,eu . Then, at g =1L , the

1" 2

stress must be a function of L and of al,ez,...,su , and, hence

from (2.5), of L’zl’ﬂz"”"tu . We write
g = o(L,zl,...,zu) . (2.14)

We note that if yu = 1, the relation (2.10) is satisfied identi-
cally. (We bear in mind that if u =1, o(L,zl,...,zu_l)=o(L,L).)
It is easily seen that if the function O(L,Zl) = E(L,tl) , say,

is specified, and we take

£(L,8) = 3 55 [G(L,0)] (2.15)

in (2.4), we obtain
o(L,2)) = % [25(L,£,) - §(L,0) - T(L,L)] . (2.16)

o(L,0) gives the specified dependence of stress on path length

for monotonic decrease of strain from zero to -E . Provided that

e

¥
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E(L,O) = 'E(L)L) ) (2.17)

we obtain from (2.16)
o(L,Zl) = o(L,Zl) . (2.18)

The condition (2.17) is the condition that the prescribed stress
merely changes signs if the prescribed strain history is replaced
by its negative. That such a condition is necessary if the pre-
scribed stress is to be expressible in the form (2.4) is evident.
We thus conclude that if the stress at £ = L, following a single
reversal, changes sign when the strain history is replaced by its
negative, then this stress can be expressed in the form (2.4).

We shall now show that if, further, the specified stress at
£ = L following u reversals of strain is an odd function of the
strain history and satisfies the relations (2.10) for wu = 1,2,...,u,
then the specified stress can be expressed in the form (2.4) with
f(L,2) given by (2.15).

We prove this result by induction. Suppose that cCL,El,...,
2 ) with o odd is given by (2.4), i.e. by (2.6) with yu = a-1,

a=-1
thus

o= 2(g(L,£) - g(L,&,) + ... -g(l, ¢, )] + g(L,L). (2.19)

We assume that (2.10) with u = a is valid. Then, we obtain,

from (2.19), (2.9) , and (2.10) with p =a ,

T(Lyy,enesly) = 208(L,8)-8(L,25) *+ «vv + g(L,2)] -g(L,L). (2.20)




It follows that O(L,Kl,...,ta) is given by (2.4) with <£(L,8)
given by (2.15). An analogous argument is applicable to the case
when o 1is even. Since we have already seen that the proposed
theorem is valid when o =1, it is valid for all «o

It is suggested that an experimental test of the validity or

non-validity of the constitutive equation (2.4) might well be based

on the relations (2.10).
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3. The incremental modulus - uniaxial deformation

In this section, we again consider a uniaxial deformation in
which the stress is given in terms of the strain history, regarded

as a function of strain path length £, by

L
o(L) = J f(L,2)de(L) , (3.1)
0

where L is the value of £ at which the stress is measured.

We consider a strain history which consists either of a mono-
tonically increasing strain, or of a sequence of increasing and de-
creasing strains. We assume, however, that the strain E corres-
ponding to path length L is positive and is reached finally
through increasing strain, We calculate the incremental moduli at

£ = L when the strain is increased by an infinitesimal amount AE.

Let Ao be the corresponding increase in stress. If AL 1is the

increase in £ corresponding to the strain increase AE , we have
AL = |AE| . (3.2)

We denote by wu, and u_ the incremental moduli correspond-

ing to AE positive and negative respectively. Then, from (3.1),

L
0 (3.3)
L 3
£(L,L) -J s £(L,8)de
0
- 0 N
= £(0,0) = u, , say (3.4)




Mo is the incremental modulus at zero deformation. From (3.3)
u, + p_ = 2£(L,L) . (3.9)

Valanis [1,2] made the particular choice of £(L,2):

-1
_ 1+B£\n
f(L,2) = EO + El(TTEE/ R (3.6)
where EO, El’ B8 and n are positive constants. In this case,
My = f(L,L) = EO + El , (3.7)

and (3.5) becomes

My U= 2ug . (3.8)

For metals it is found experimentally that wu_ is approxi-
mately Mo and since, in the plastic regime, wu, 1is very much
less than My the relation (3.8) is not valid. This was
adduced as an argument against the endochronic theory ad-
vanced by Valanis in [1,2] and led the latter to modify his theory.
It is evident that the same criticism would apply to any theory in

which f(L,2) has the form

f(L c 9, (&) . ¢, (L) c ¢, (&) 3 9
= + +

( ”e) l ¢1(Lj 2 ¢—2' (Lj .. ) —mv s ( . )

where Cl""’cv are constants, so that f(L,L) = £(0,0) . How-

ever, it may not apply for other forms of £(L,£). Also, this
criticism does not, of course, preclude the applicability of one-

dimensional constitutive equations of the type considered to other

materials than metals.
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Dissipation in cyclic deformation

Unloading-loading

We now consider the material to undergo a monotonically

increasing uniaxial strain to strain e Thereafter, the

1

strain is decreased to €, and then increased to €, - We
shall calculate the dissipation 0 , per unit volume, in thi
cycle of deformation.

Let El, 22 and L denote the strain path lengths at
the first and second strain reversals and at the final strai

E respectively. Then,

1l

L. =e¢. , &, =12, -, , L =23e, - 2¢e. . (4.

Let ¢ be the value of the strain path length at a generic

point on the cycle at which the strain is e . Then,

d¢ = de (strain-increasing) and dZ = -de (strain-decreasing)
(4.
From (2.4) and (4.2) the stress at a generic point of the

cycle, corresponding to path length £ , 1is given by

c(t,zl) = Zg(z,tl) -g(L,2) strain-decreasing
(4
c(Z,Zl,KE) = Zg(Z,ﬂl) -Zg(ﬂ,lz) + g(L,2), strain-increasing

where g(£,g) 1is defined by (cf.(2.7))

g
g(2,5) = [ £(L,£)dE . 4.
0

The dissipation 0 , per unit volume, in the cycle is given

S

n

1)

z)

.3)

4)

by

[ S
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£, L

0 = -[ o(€,€,)de + I a(£,8,,2,)de . (4.5)
2, e,

We now make the assumption that the amplitude of the
deformation is sufficiently small so that terms of second deg-

ree in (z-zl) may be neglected in comparison with those of

first degree. Then, we may write, from (4.4),

g(zszl) g(tl’zl) + (z"'e'l)gl ’

g(£,2,) = g(2,,4,) + (2-2)g, + (£,-2)8, , (4.6)

g(£,8) = g(Ly,2) + (L-2)g+ (2-2))g, ,

where g1 and g, are defined as the values of

ggé%iél and 33%%;51 respectively when £ = Zl and £ = Kl.
Introducing (4.6) into (4.3), we obtain

o(&,2,,4,) = g(&,2,) + (2-2,)g, + (£+L -22,)g,

We now introduce (4.7) into (4.5) and carry out the integra-

tions to obtain, with (4.1),

D =g (e;-c,)? . (4.8)

For the particular expression for f(£,E) wused by

Valanis (cf.(3.6)), viz.,

| 0,0 = B+ B (15E) (4.9
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where E E B and n are positive constants, we have

O’ l’
from (4.4) and the definition of g

B (n-) 1 1 (4.10)
g, = - ——— - —_— . .
X - [ (hul)n]

Loading-unloading

We now consider the material to undergo a monotonically

increasing uniaxial strain to € It then undergoes a cycle

1
of strain in which the strain is increased to €, > €, and
then decreased to € again, The strain path lengths
ﬂl, 22 and L are now given by
Zl =€ 5 22 =€, L = Zee-el . (4.11)

If, as before, £ 1is the value of the strain path
length at a generic point on the cycle at which the strain is

e , we have, as before, the relations (4.2). The stress is

given by
o(L,2) = g(&,8) strain-increasing
(4.12)
c(£,£2) = Zg(z,lz) -g(L,£) strain-decreasing .
The dissipation 0 1in the cycle is now given by
22 L
D = f o(2,2)de -f 0(L,2,)de . (4.13)
zl 22

Again, with the small amplitude assumption, we obtain




(c)
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g(£,8) = g(Ly,8,) * (e-2))g, * (£-2))8, »

(4.14)
From (4.12), (4.13) and (4.14) we obtain, with (4.11),
D = -gl(ez-el)a ) (4.15)

If f£(£,8) 1is given by (4.9), we find, as before, that 81
is given by (4.10).

Discussion

We note from (4.4) that

. |
g ~ é&§%4§1‘2,5=£1’21 - J : 3EL.8) ag . (4.16)

0

Then, g, = 0 if El = 0 and, from (4.8) and (4.15), we have
D = 0, whether the infinitesimal cycle of deformation is the
loading-unloading or the unloading-loading cycle. If f 1is a
monotonically decreasing function of £ , then 81 is nega-
tive and, for ll # 0, D <0 for the unloading-loading
cycle and 0 > 0 for the loading-unloading cycle. This is
the situation which prevails in the case when f

takes the particular form (4.9) proposed by Valanis. These
results imply that the materials considered have no finite
elastic range as was pointed out by Lee [3]. Also, the fact
that D < 0 for the unloading-loading cycle implies, was

pointed out by Sandler [4], that the material modeled is

unstable.
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Three-dimensional theory

We consider the material to undergo sufficiently small defor-
mations so that the deformation in an element can be described by
the history of the infinitesimal strain matrix e(t) = Heij(t)”
referred to a rectangular cartesian coordinate system x . Let
o= ”cij“ denote the stress matrix at time T , referred to the
system X

The length of the strain path at time t in 9-dimensional

. - - *
strain space is given by

de(t) = {er[de(t)]?%, 2(0) =0, (5.1)
l1.e.
t
ee) = [ ferpde(e)1?)® . (5.2)
0

We introduce the notation

L = £2(T) . (5.3)

It has been shown by Pipkin and Rivlin [6] that, for an
isotropic rate-independent material, the stress corresponding to
strain path length L is an isotropic tensor functional of the
strain history regarded as a function of ¢ . We shall examine
the properties of a particular class of such relations which in-

cludes that used by Valanis [1,2] as a special case,.

* The strain path lengths £ and L introduced in this section
do not reduce in the uniaxial case to those introduced in §2.
They can, however, be simply related to them.
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We define an isotropic scalar functional ¢ of ¢€(&) by
dg = dg(£) = ¢[de(®)] , ¢(0) =0, (5.4)

where ¢ 1is a positive definite isotropic scalar function of

de(2) , homogeneous of degree unity in the latter. From (5.4)

ya
¢ = o = | eldeleh] . (5.5)
0

We call ¢ the intrinsic time. We note that since ¢ 1is posi-
tive definite, ¢ increases monotonically with £. Since ¢ 1is an iso-
tropic function of ds(z) , 1t must be expressible as a function
of the elements of an isotropic integrity basis for dg(l) . This
may be chosen as Il’ 12, 13 defined by |

I, = tr(de(e)] , I, = tr[de(®)]®, I

1 5 = det[de(8)] . (5.6)

3

We adopt the notation
Z =1z(L) . (5.7)

We now assume that the stress o corresponding to strain path

-~

length L 1is given by an expression of the form

L L
2 [T w5 [T A el (5.8)
0

Q
]

where § denotes the unit matrix.

~

Valanis adopts the particular form for ¢

olde ()] = (k12 + K107, (5.9)




where kl and k2 are positive constants, which may vary from

material to material. He gives no reason for making this particu- *

lar choice beyond the statement 'it appears logical to define gz

by..."
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6. Simultaneous simple extension and simple shear

We now suppose that the material is subjected to a simple
extension in the xl-direction of a rectangular cartesian coordin-

ate system x and a simple shear for which the direction of shear

is the x2-direction and the plane of shear is the xlxa-plane.
We adopt the notation
e = e(L) = €,,(8) , x=x(L) = €, ,(8) (6.1)
and
E=¢e(), K-=«(), (6.2)

where £ = L ét the instant at which the stress is measured.

In order to be specific we shall supposeAthat the initial
extension is positive and that successive reversals of the exten-
sion occur at ¢ = €13€55 008 . We also assume that the initial

H
shear is positive and successive reversals occur at K = SELCTRRRRLNE ;
It is assumed that the shearing and extensional deformations may
occur in any order, but take place in disjoint time intervals.

Let

(]
]

Za when ¢ = €, (a=1,...,u) ,

(6.3)

2 = ZB when « = <g (8=1,...,v) .

For a simple extension in the X,-direction only o¢,; 1is non-
zero and, from (5.8), for the simple shearing deformation in the .

12-plane, only 012(=021) is non-zero.

We assume, with Valanis, that Poisson's ratio for the material
is a constant ¢ , say, independent of the deformation to which

the material is subjected. (We shall discuss this restriction later
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in §7). Then,
tr ¢ = (1-2w)e . (6.4)

We have, from (5.2), (6.3) and the assumption that Poisson's ratio

is constant

o]

8
2 = (1+25%%] § 2(-1)% e (~1)“s}
=1

+ z*{‘g 2(-1)a’1xa + (-1)aK} , (6.5)
a=1l

where B is the number of reversals of extensional strain and vy
is the number of reversals of shear strain prior to the strain-path
length £ Dbeing aﬁtained.

Since 4% is homogeneous of degree unity in dg(ﬂ) and is
positive definite, for the particular class of deformations con-

sidered in this section

k fde(£)| for simple extension
o= _* (6.6)
kzldK(Z)l for simple shear ,

where k and Ez are positive constants, which depend on the

1
particular choice of ¢ . We note from (6.5) that
lde(2)] = (1+28%)7% de
-3 (6.7)
|de ()] = 2 de

From (6.4) and (5.6), we have

= $%(de)3 for simple extension
(6.8)
= Z(dK)2 for simple shear.

I, = (1-28)de, I, = (1+28%)(de)?, I

1 2

3

I =1,=0, I,




k

In the particular case (5.9) considered by Valanis, we

obtain, with (6.7) and (6.8),

= {k; (1-28)%+ k,(1+23°%)}% (1423%)™ d¢ for simple extension
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(6.9)

©
']

kz de for simple shear

Introducing (6.7) into (6.6) and comparing the resulting expres-

sions with (6.9), we obtain

—_ - ~2 1.
k, =k (1-28)% + k,(1+25%)}7
’ (6.10)
k, = (2k,)*%
2 2 *
As another illustration, suppose
_ 4 2 21%
o = [aIl + bIlI2 + CI3I1 + eIZ] . (6.11)

where a,b,c,e are positive constants and Il’ 12, 13 are de-

fined by (5.6). Then, from (6.11), (6.7) and (6.8)

[a(l-28)" + b(1-28)2(1+25%) + c32(1-28)

€
]

+ e(1+25%)21% (1+26%)™% d2 for simple extension
(6.12)
¢ = e de for simple shear.

Comparing (6.12) with the expressions for ¢ obtained from (6.6)

and (6.7), we have

k, = [a(1-28)" + b(1-28)2(1+23%) + ca?(1-28) + e(1+20)3)% ,

(6.13)

, = (4e)® .




We have seen that any ¢ , which is a function of Il’ I2, 13

and is homogeneous of degree 1 in dg/dl , leads to the expres-
sion (6.6) for simple extensions and simple shears of the types
considered. It follows that we cannot distinguish between differ-
ent forms of ¢ by experiments in which the deformation is a
sequence of such simple extensions and simple shears. In particu-
lar, the experiments of Mair and Pugh, which involve the super-
position of simple extensions on simple torsions of thin tubes,
cannot be used, as Valanis has done, to establish the validity of
the particular form (5.9) for ¢ . Agreement of his theory with

such experiments could, at best, lead only to the conclusion that

the theory is not inconsistent with the experiments.




7. Poisson's ratio

It is assumed by Valanis in [1,2] that Poisson's ratio for
the materials he considers is constant. An assumption as radical
as this should be tested independently for any material to which
the theory is applied. This could be done, at any rate in prin-
Ciple, by measuring the change in volume, or the lateral contrac-
tion, of a rod of the material when subjected to simple extension.

Alternatively, it might be done by making simultaneous
measurements of tensile and shearing force when a thin cylinder of
the material is simultanecusly subjected to simple extensional and
shear strains which are increased proportionately. For simultane-
ous monotonically increasing simple extensions and simple shears, we

find from (5.8) that, whether or not Poisson's ratio & is constant

L
st | e s @m0 |
0 L
Tpp T o3 = | [-28M(Z,E) ¢ (-2DA(Z,E0)]de(@) = 0, (7.1)
0
L
5, = L 2u(2,8)d6(8) , o, = ay = 0

where =(£) and «(£) denote the extensional and shear strains

respectively. In (7.1), £ 1is given, from (5.1), by
de = [(1+28%) (de)? + 2(d)?]1% (7.2)

with ¢ = 0 when the material is undeformed. Also, from (5.6),

we have

I, = (1-23)de(8), I, = (1+23°) [de()1® + 2[dx(e,]1? , 5
.9

I, - Blde (@) ]id[de (£)12 + [de(£)]°%}




dz 1s a positive function of Il’ I2, I,,

unity in de(¢) and d«(¢), and 7 = 0 when & = 0

homogeneous of degree

It follows from (7.1) that, if & is constant,

Q
]

Ly = 2(1+3) [“u(:.«;)de(z),
0 (7.4)

Q
]

L
s [ u(Z,2)de ()
0

Now, if the extensional and shear strains are increased propor-

tionately, so that

k(L) = xe(L) , , (7.5)

where x 1is a constant, we have, from (7.2) and (7.5), i

"2 2, =L
de(2) = (1+2&%+ 2x°)~2 de¢ ,
(7.6)
.2 2. -1
de (£) = x(1+20%+ 2x°)7* d2
Also, from (7.4) and (7.6), we have
.2 2. -y (L
011 = 2(1+@) (1+2a™+ 2x7) 7* J u(z,z)de ,
0
2 24 -3 L
gy, = 2(1+25%+ 2x°)~ x[ u(z,z)de
0
Thus,
0 1/0, = (1+8)/x . (7.8)

The assumption that Poisson's ratio is constant has been criti-

cized by Lee [3] insofar as the applicability of the theory to




metals is concerned. For most metals, Poisson's ratio in the
elastic range is about 1/4. This implies that the ratio
bulk modulus/Young's modulus = 2/3. It is well-known that when
the plastic strain in a metal is large compared with the elastic
strain, the bulk modulus is far greater than the Young's modulus*.
It is, however, possible that for other materials, particu-
larly those which may, with good approximation, be regarded as in-
compressible, the assumption of constant Poisson's ratio will be

valid.

* Here we are using the term "Young's modulus'" in the sense of
(tensile force per unit area/extensional strain) notwithstanding
that the material is plastically deformed.
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8. A continuity consideration

We now consider a deformation which consists of alternate
infinitesimal simple extensional strains of amount Ae and in-
finitesimal simple shearing strains of amount 4k . As in §56, we
consider the extension to be parallel to the xl-axis of a rectan-
gular cartesian coordinate system x and the shear to be in the
x2-direction and the xlxe-plane. We consider the tensile and
shearing stresses after v such simple extensions and simple
shears. We denote the resultan. extensional strain by E(=vie)
and the resultant shear strain by K(=vAx) . The value of < when

the extensional strain is & and the shearing strain is « is

given by (cf.(6.6))

z = k.e + k.x . (8.1)

Since

x/e = K/E , (8.2)

equation (8.1) can be rewritten at

r = (il + g EZ)Q = (% E + ka)K . (8'3)

We shall assume that 7 has the form proposed by Valanis and

given by (5.5) and (5.9). Then, El and k,

With the assumption that Poisson's ratio is constant, the

are given by (6.10).

tensile and shear stresses are obtained from (7.4) as

Q
[]

E
2(1+&) [ w(2,2)de
0 (8.4)

K
= 2[ “(Z’C)dK ’
0

11

Q
)

12




where ¢ is given by (8.3) and
Z = k,E+ kX . (8.5)

We now suppose that instead of increasing the strains to their
final values in a stepwise fashion, we increase them proportion-
ately. Then, using the expression for ¢ given by (5.5), (7.3)

and (5.9) we have, with (8.2) and (6.10),

(B ER) e (RER) <
Z 1is obtained by taking € = E or «x = K 1in (8.6).

The tensile and shear stresses are then given by (8.4) with
these expressions for 7 and Z . It is evident that théy afe, in
general, different from those which correspond to the stepwise
deformation previously considered. Similar disparities will evi-
dently be found, except perhaps in some exceptional cases, if other
forms for ¢ are adopted.

In mathematical terms, the type of behavior predicted by the
model we have considered arises from the fact that the intrinsic
time is not a continuous functional, in the sense of the supremum
norm, of the strain history.

We note that if a material does, in fact, exhibit the type of
behavior predicted in this section, it will be extremely difficult,
and perhaps impossible, to subject it to meaningful tests of the

type considered.
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9. Valanis's second theory - phenomenological approach

In presenting his first theory, Valanis claimed, as a major
advance, that the endochronic assumption enables us to construct
a continuum-mechanical theory, for rate-independent elastic-
plastic materials, in which the material properties are described
by a single constitutive equation without the need to introduce the
concept of a yield surface. These constitutive equations also have
the attractive feature that, in them, the stress is related to
total strain.

Both of these features are lost in the second theory, advanced
by Valanis in order to meet some of the criticisms of his first
theory. This second theory is motivated by '"thermodynamic'" argu-
ments of a type similar to, and open to the same criticisms as,

those advanced in developing the first theory.

In the present section we will discuss the theory in more con-
ventional phenomenological terms. In [5] Valanis presents his
ideas at various levels of generality, but here we will limit our
discussion to that form of the theory whose implications are dis-
cussed in [5] at greatest length.

The strain ¢ 1is regarded as the sum of an elastic strain

-~

€ and a plastic strain €p » thus:

~

€= Eg * Ep . (9.1)

The stress o 1is related to the elastic strain by a constitutive

-~

relation of the form

0 = Zugep * Ay(treg)s (9.2)
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where Mo and AO are constants, It is assumed that dilatational

deformations are purely elastic, so that

tr ep = 0, tr € = tr e . (9.3)
Frem (9.2) and (9.3)2, we have

tr g = (2u0+ Sko)tr € . (9.4)
From (9.2), the deviatoric stress s 1s given by

=0 -%(tr g) = Zugeg (9.5)

(37

where g denotes the deviatoric elastic stréin. From

(9.1), (9.3) and (9.5), the deviatoric plastic strain €p is given
by

Sp T Ep T €S =€ - /2y, (9.6)

~ -~ ~

where e denotes the deviatoric total strain.
An intrinsic time ¢ 1is defined in terms of the plastic

strain by

dg = {tr(dep)?)® , (9.7)

with 7z = 0 in the undeformed state. We note that ¢ 1is the arc
length measured along the strain path in the 9-dimensional space
defined by the components of the plastic strain in a rectangular
cartesian coordinate system. [We note the analogy between ¢ , so
defined, and £ defined by (5.1).]

For a rate-independent material the plastic strain ¢, may be

regarded as a function of ¢ . It is assumed in [S] that the

4

c e e
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deviatoric stress, when ¢ = Z , 1is related to the plastic strain

by a constitutive equation of the form

de
s = s = s{® £ v v r, (9.8)
where
vA
T N RN O (9.9)

0

s&o) is a positive constant, and (Z) is a positive monotoni-
cally increasing function of 2 . From (9.8) and (9.7) it follows

that

tr(s-0)? = [syPv@? . | (9.10)

Equation (9.10) may be regarded as a hypersphere in the 9-
dimensional space formed by the components of s in a rectangular
cartesian coordinate system. The center of this hypersphere is at
r (regarded as a vector in the 9-dimensional space) and its
radius is s&O)w(Z) . Since tr s =0, s must be on the inter-
section of the hyperplane tr s = 0 with this hypersphere. This
intersection is itself a hypersphere in the 8-dimensional sub-
space of the 9-dimensional space for which tr s = 0 . This hyper-

sphere is called the yield surface. Since tr ¢, =0, it follows

that the point r lies in this subspace. It is, of course, the
center of the hypersphere in the 8-dimensional space and the radius
of this hypersphere is s&o)w(Z)

We note from (9.7) that if dEp =0, then dz = 0 and,

conversely, if dz = 0 , then dep = 0 . Thus, if at any instant
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the deformation is purely elastic, dep/d;ic=z is indeterminate and
equation (9.8) becomes meaningless. However, from (9.2), the stress

increment do is then related to the strain increment de(=daE) by
dg = Zuodg + Ao(tr de) (9.11)

and, from (9.5), the deviatoric stress increment ds 1is related to

the deviatoric strain increment d§(=dgE) by
ds = 2uodg . (9.12)

If dEP/dCl:=Z is not indeterminate, it follows from (9.8)
that the plastic strain path, at arc length Z , 1is in the direc-
i tion of the outward normal to the yield surface corresponding to

arc length Z

We see that the theory which has been presented is of a type
generally similar to many other plasticity theories which have been

formulated. In effect, it is assumed that:

(i) The total strain may be regarded as the sum of an elastic ]

strain and a plastic strain; the plastic strain is isochoric.

‘ (ii) It is assumed that the moduli associated with changes of
elastic strain are constants, independent of strain history.
(iii) There exists a spherical yield surface in deviatoric stress

space, whose outward normal is parallel to the incremental plastic

strain vector.

(iv) The radius of the yield surface and the position of its

center depend on the history of the plastic strain (i.e. the material
modeled exhibits both kinematic and isotropic hardening). A particular

form is chosen for this dependence, which, while having a measure '




o

akfimly

of generality, is far from being of the most general form that can
be envisaged.

(v) If the deviatoric stress lies at a point on the yield surface
corresponding to some specified plastic strain history and is then
changed to a point lying inside, or on, this yield surface, the

corresponding deformation is purely elastic.

It is evident that the assumptions (i), (iii) and (iv) meet
the objections to the first theory of Valanis discussed in §54, §
and 7. Paralleling the discussion in 36, we shall now discuss the
extent to which experiments involving superposed simple extensions
and shears carried out in discrete time intervals can be used to
establish the validity of the constitutive equation (9.8), with
(9.9).

We again consider a somewhat wider class of constitut.ve
equations which have the form given in (9.8) and (9.9), but in

which 7 1is defined in a different manner. Let ép denote the

length of the plastic strain path at time t , thus (cf. (9.7))
t 20k
tp = Zp(t) = J {tr(dep(t)] e, (9.13)
0
and let
Lp = tP(T) . (9.14)

Then, £¢p can be used to parametrize ¢p
We now define dz as an arbitrary positive isotropic scalar
function of dep , which is homogeneous of degree unity in the

latter. Accordingly, dz is a positive function of the isotropic




invariants of dep , denoted Il, I2, I3 and defined by (cf.(5.6))

I, = tr{dep(£p)] = 0, I, = tridep(€p)1%, I, = det[dep(£p)],

1 2 3
(9.15)
which is homogeneous of degree unity in dep . We take ¢ =0 ,
when £, =0 . We define Z by
Z = C(LP) . (9.16)

With this new definition of ¢ , we assume a constitutive
equation of the form (9.8), with (9.9). Then, it is easily shown,
in a manner analogous to that employed in §6 in discussing the
first theory, that measurements of stress, in experiments involving
simple extensions and shears carried out in disjoint time intervals,
cannot be used to establish the validity of any particular form of
dependence of ¢ on 12 and I3

Also, it can be shown, paralleling the discussion in §8, that,
in general, for a constitutive equation of the form given in (9.8)
and (9.9), paths in plastic strain space which are arbitrarily
close together, may have very different values for ¢ correspond-
ing to the same values of plastic strain and accordingly may yield
very different values for the stress at the same value of the
strain. However, this fact does not constitute an objection to
the theory, since plastic strain histories which are close together,
in the sense of the supremum norm, may be associated with very

different histories of the total strain.
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Appendix A. "Thermodynamic" justification of the first theory

In this section, we outline the essential features of the
argument of Valanis in arriving at the constitutive equations of
his first theory of plasticity, in the particular case when the
strains are small and the deformations are carried out isother-
mally. The argument given here is not strictly that given by Vala-
nis [1]. His theory involves rather elaborate thermodynamic con-
siderations of questionable validity, which are, in any case, un-
necessary for attaining his final constitutive equations. We have
found it possible to replace these arguments by far simpler ones
which involve only some of the assumptions used, either explicitly
or implicitly, by Valanis and none that are not used by him.

Valanis defines, for a rate-independent material, an intrinsic

time scale z which is a monotonically nen-decreasing function of real

time t and is a functional of the strain-history up to time t
He considers that the form of this functional dependence may depend
on the material considered. For an isotropic material undergoing
small deformations, he expresses =z as a monotonically increasing

function of another (positive) variable ¢ , thus
7z = f(;) . (-\.1)
¢ 1is, in turn, defined by an expression of the form

(dg)2 = k (tr de)? + Kk, tr(de)? , (A.2)

n
[en]

where kl and k2 are positive material constants, with g

initially. We note that the expression for dg 1is the most




general quadratic form in d§ , With constant coefficients, which
is invariant under an arbitrary orthogonal transformation. Valanis
then assumes that the stress o measured at time t 1is an iso-
tropic tensor functional of the strain regarded as a function of z.
These assumptions ensure that if we consider the strain in the
material to execute a specified path in nine-dimensional strain
space, the stress corresponding to a particular point on this path
is independent of the rate at which the path is executed. The same
objective can be achieved by choosing 2z to be any isotropic scalar
functional of the strain history which increases monotonically with
time. For example, the strain path length £ , defined by (5.2),

provides such a functional. It is emphasized that the particular

choice which is made neither increases nor decreases the generality

of the theory developed. It merely changes the form of the
functional expression for ¢ appropriate to a given material.
The particular definition (A.2) of ¢ adopted by Valanis is

justified only by the statement [1] '""it appears logical to define

t by..." . The particular dependence of 2z on g which he i
assumes is avowedly justified only by alleged agreement of the pre- :
dictions of the theory with experiment.
From this point onwards, the argument of Valanis can be very
much simplified without losing his final result. We shall present
this simpler argument here and avoid the questionable thermo-
dynamic argument given by him in [1].
We assume, with Valanis, that the state of the material at
any instant can be characterized by the instantaneous values of the
strain € and of v internal variables g(a)(a=l,...,v) , which

~

are symmetric second-order tensors. It is further assumed, still

L i R “"_-—vu




following Valanis, that the rate of change of q(a), measured

~

with respect to z , 1is determined by the instantaneous values

of € and of q(s)(8=l,...,v) , thus

~

dq(a)
T = £, . (A.3)
This is the evolution equation for q(a) . (We will see later

that this assumption is unacceptable, but for the moment will

pretend that this is not the case.)

The function f(a) must be an isotropic symmetric tensor
function of ¢ and q(e), since the material is isotropic. We

-~

shall suppose that it depends sufficiently smoothly on ¢ and

~

q(B) and that these are sufficiently small, so that we can neglect

terms of higher degree than the first in them. We also make the

assumption that e = g(a) =0 when z =0 . We accordingly write
49" cac+ VoA q® « (Bre+ ] trq®)s (A.4)
dz as P x3d i a=1 agtT 9 20 e

where the A's and B's are constants and & 1is the Kronecker

-~

delta. From (A.4) we readily obtain

d(tr g(“)) ) v . (3)
—_— = (Aa-{»JBO‘)trE + le (:\ae'*-.)Bas)tr q ,
(A.5)
(o)
dq v
i (8)
dz = Auep * BZl AaBgD ’

where the deviatoric strain and deviatoric internal variables are

given by




T e e s e
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=c-sterede s gpt =g m3lr gt g
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D

af*

Equations (A.S)Z can be solved for to yield a

solution of the form

- z -oe(z-Z') o
Aas J e ED(Q ydz ',
0

qf*) =

ne~i<

B=1

where the A's are constants determined by the equations

ASU(AQS+DUSQB) =0,
(a,u=1,...,v)

in which pn(u=l,...,v) are the solutions for ¢ of the

equation

det'oéOLB + A =0 ,

28|

where 5a8 is the v-dimensional Kronecker delta.

In a similar manner equations (A.S)1 can be solved for
tr q(a) to yield

tr g(l) =

- - (z-z')
3 ~ (! ,'
BCﬂB [ e trg(‘. )d... N

[l

2

0

where the B's are constants given by

V —
Lo Bay(Ayg*3Byg + Ay84e) = 0,
521
(a,u=1,...,V)
\) —
I B, = A, + 3B,
B8=1

(A.6)

(A7)

(A.8)

(A.9)

(A.10)

(A.11)




in which K“(u=l,...,V)

equation

detiksa

of the

are the solutions for A

3 + A + 3B

aB

(A.12)

In deriving (A.7) and (A.10), we make the assumption that

NO

when =z = (
With the assumption

rewrite (A.7) and (A.10)

(x)
dp

( L
tr g - . B

that E(z) = 0 when z = 0, we can
as
t
1 z -oB(z—z ) iy
ED(Z) %J e dED(—' ) ’
0 (A.13)
z2 -xg(z-2")
tre(z) -XL-J e BT d[trg(z')]}.
0

We now assume that the Cauchy stress ¢ at '"time" =z 1is an
isotropic linear function of €e(z) and q(a) (a=1,...,v) The
deviatoric stress gy 1is defined by

o, = o- L (tro)s (A.14)
~D < 3 g o
Then, we may express 9 and tro in the forms
v
on = Gen + 7 G q(B) ,
D 7= 5o, TBSD (A.15)
Vv
tro = H(tre) + § Hs(tr q(B)) ,
- T B=1 ~
where the G's and H's are constants. Using (A.13), we obtain

from (A.15), expressions

for and trs of the forms

p




o[ wzzhagy

9 *
0 (A.16)
tro = f <(z-z')d[tre] ,
0
where the functions wu(z-z') and «(z-z') have the forms
v -0 (z-z')
u(z-z') = uy + [ uge g ,
B=1
' (A.17)
v A (z-2)
B
k(z-z2') = k. + § «.,e ,
o T gk, “8
and Mgs Kg (8=0,...,v) are constants.

It is evident that the passage from equations (A.13) and
(A.15) to the constitutive equations (A.16) is valid, whatever the
physical interpretation of z , provided that it is an isotropic
variable in terms of which the histories of the strain and of the
internal variables can be parametrized. The choice of z made

by Valanis is

D= £(z) , £(2) = § Ln(1+80) (A.18)

where 3 1s a positive constant and ¢ 1is defined by (A.2).
If we accept a relation of the form (A.lS)1 and use (A.3),
we obtain

dq(a)
S - f'(C)f(a)(E:ﬂ(B)) ) (A.19)

This implies that the infinitesimal changes in the internal
variables due to an infinitesimal change in the strain depends not

only on the instantaneous values of the internal variables and the




strain, but also, through 7 , on the whole past history of the
strain. We remark that usually, when internal variables are intro-
duced, along with the current strain, as independent variables in

a constitutive equation, it is in order to provide a full des-
cription of the current state in terms of the current values of the
independent variables of the theory. If the internal variables and
the strain provide a complete description of the state, then the
infinitesimal change in the internal variables due to a specified
infinitesimal change in the strain should depend only on their
current values.

Another peculiarity of the relation (A.19) and, indeed, of
(A.3) is that different infinitesimal changes of strain which result,
from (A.2), in the same values of dz , lead to the same infini-
tesimal changes in the internal variables g(a) . This peculiarity
can be avoided by including the '"rate" of change of strain, dg/dz R

as an independent variable in (A.3). Then, the relations (A.S5)

are replaced by

d(er q(®)) d(tre)
—dz (Aa+3Ba) tre + (Coc+3Da) —dz
+ E (A .+3B_,)tr q(B) (A.20)
o1 “TaB ad < ’
dq{®) de, v
D _ D (8)
Z— "Mt Gt L Awdp o

3=1

where the A's, B's, C's and D's are constants.
From (A.16), proceeding as before, we again obtain expressions

for oy and trg of the forms (A.16) where wu(z-z') and «x(z-z')




still have the forms (A.17), and u, and <, (3=1,...,v) are

Ld S
(different) constants. o and A, (3=1,...,v) are still the

W

solutions of equations (A.9) and (A.12). We note, however, that
in obtaining (A.17) from (A.20) we must either assume that
fcl)( ) in (A.3) depends linearly on dE/dz , oOr that it is a
sufficiently smooth function of de/dz and that de/dz is

CjCB)

sufficiently small. The assumption that & and are small

does not, of course, guarantee that de/dz 1is small. Indeed,
dE/dz will not, in general, be small. For example, if the defor-
mation considered is a simple shear, then the shear component of

. -k . .
de/dz is (2ky) *, while the remaining components are zero.

Even when modified by the inclusion of -dz/dz as an
independent variable, the evolution equation (A.19) still implies
that infinitesimal changes in the internal variables resulting
from a specified infinitesimal change of strain is independent
of whether the strain is purely elastic or plastic. It is
difficult to see what physical identification of the internal

variables could lead to such a result.
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